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gradient methods are mentioned.
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1 Introduction

Conjugate gradient methods are a class of important methods for solving
unconstrained optimization problem

min f(x), x ∈ Rn, (1.1)

especially if the dimension n is large. They are of the form

xk+1 = xk + αkdk, (1.2)

where αk is a stepsize obtained by a line search, and dk is the search direction
defined by

dk =

{ −gk, for k = 1;

−gk + βkdk−1, for k ≥ 2,
(1.3)

where βk is a parameter, and gk denotes ∇f(xk).
It is known from (1.2) and (1.3) that only the stepsize αk and the pa-

rameter βk remain to be determined in the definition of conjugate gradient
methods. In the case that f is a convex quadratic, the choice of βk should
be such that the method (1.2)-(1.3) reduces to the linear conjugate gradient
method if the line search is exact, namely,

αk = arg min{f(xk + αdk);α > 0}. (1.4)

For nonlinear functions, however, different formulae for the parameter βk

result in different conjugate gradient methods and their properties can be
significantly different. To differentiate the linear conjugate gradient method,
sometimes we call the conjugate gradient method for unconstrained opti-
mization by nonlinear conjugate gradient method. Meanwhile, the parame-
ter βk is called conjugate gradient parameter.

The linear conjugate gradient method can be dated back to a seminal
paper by Hestenes and Stiefel [46] in 1952 for solving a symmetric posi-
tive definite linear system Ax = b, where A ∈ Rn×n and b ∈ Rn. An
easy and geometrical interpretation of the linear conjugate gradient method
can be founded in Shewchuk [77]. The equivalence of the linear system to
the minimization problem of 1

2 xT Ax− bT x motivated Fletcher and Reeves
[37] to extend the linear conjugate gradient method for nonlinear optimiza-
tion. This work of Fletcher and Reeves in 1964 not only opened the door of
nonlinear conjugate gradient field but greatly stimulated the study of non-
linear optimization. In general, the nonlinear conjugate gradient method
without restarts is only linearly convergent (see Crowder and Wolfe [16]),
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while n-step quadratic convergence rate can be established if the method
is restarted along the negative gradient every n-step (see Cohen [15] and
MicCormick and Ritter [54]). Some recent reviews on nonlinear conjugate
gradient methods can be found in Hager and Zhang [44], Nazareth [60, 61],
Nocedal [62, 63], etc. This paper aims to provide a perspective view on the
methods from the angle of descent property and global convergence.

Since the exact line search is usually expensive and impractical, the
strong Wolfe line search is often considered in the implementation of non-
linear conjugate gradient methods. It aims to find a stepsize satisfying the
strong Wolfe conditions

f(xk + αkdk)− f(xk) ≤ ραk gT
k dk, (1.5)

|g(xk + αkdk)T dk| ≤ −σ gT
k dk, (1.6)

where 0 < ρ < σ < 1. The strong Wolfe line search is often regarded as
a suitable extension of the exact line search since it reduces to the latter if
σ is equal to zero. In practical computations, a typical choice for σ that
controls the inexactness of the line search is σ = 0.1.

On the other hand, for a general nonlinear function, one may be satisfied
with a stepsize satisfying the standard Wolfe conditions, namely, (1.5) and

g(xk + αkdk)T dk ≥ σ gT
k dk, (1.7)

where again 0 < ρ < σ < 1. As is well known, the standard Wolfe line search
is normly used in the implementation of quasi-Newton methods, another
important class of methods for unconstrained optimization. The work of
Dai and Yuan [30, 33] indicates that the use of standard Wolfe line searches
is possible in the nonlinear conjugate gradient field. Besides this, there
are quite a few references (for example, see [19, 41, 81, 93]) that deal with
Armijo-type line searches.

A requirement for an optimization method to use the above line searches
is that, the search direction dk must have the descent property, namely,

gT
k dk < 0. (1.8)

For conjugate gradient methods, by multiplying (1.3) with gT
k , we have

gT
k dk = −‖gk‖2 + βk gT

k dk−1. (1.9)

Thus if the line search is exact, we have gT
k dk = −‖gk‖2 since gT

k dk−1 = 0.
Consequently, dk is descent provided gk 6= 0. However, this may not be
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true in case of inexact line searches for early conjugate gradient methods.
A simple restart with dk = −gk may remedy these bad situations, but will
probably degrade the numerical performance since the second derivative
information along the previous direction dk−1 is discarded (see [68]). Assume
that no restarts are used. In this paper we say that, a conjugate gradient
method is descent if (1.8) holds for all k, and is sufficient descent if the
sufficient descent condition

gT
k dk ≤ −c ‖gk‖2, (1.10)

holds for all k and some constant c > 0. However, we have to point out that
the borderlines between these conjugate gradient methods are not strict (see
the discussion at the beginning of § 5).

This survey is organized in the following way. In the next section, we will
address two general convergence theorems for the method of the form (1.2)-
(1.3) assuming the descent property of each search direction. Afterwards,
we divide conjugate gradient methods into three categories: early conjugate
gradient methods, descent conjugate gradient methods and sufficient descent
conjugate gradient methods. They will be discussed in Sections 3 to 5,
respectively, with the emphases on the Fletcher-Reeves method, the Polak-
Ribière-Polyak method, the Hestenes-Stiefel method, the Dai-Yuan method
and the CG DESCENT method by Hager and Zhang. Some research issues
on conjugate gradient methods are mentioned in the last section.

2 General convergence theorems

In this section, we give two global convergence theorems for any method
of the form (1.2)-(1.3) assuming the descent condition (1.8) for all k. The
first one deals with the strong Wolfe line search, while the second treats the
standard Wolfe line search.

At first, we give the following basic assumptions on the objective func-
tion. Throughout this paper, the symbol ‖ · ‖ denotes the two norm.

Assumption 2.1. (i) The level set L = {x ∈ Rn : f(x) ≤ f(x1)} is
bounded, where x1 is the starting point; (ii) In some neighborhood N of
L, f is continuously differentiable, and its gradient is Lipschitz continuous;
namely, there exists a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L ‖x− y‖, for all x, y ∈ N . (2.1)
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Sometimes, the boundedness assumption for L in item (i) is unneces-
sary and we only require that f is bounded below in L. However, we will
just use Assumption 2.1 for the convergence results in this survey. Under
Assumption 2.1 on f , we state a very useful result, which was obtained by
Zoutendijk [94] and Wolfe [83, 84]. The relation (2.2) is usually called as
the Zoutendijk condition.

Lemma 2.2. Suppose that Assumption 2.1 holds. Consider any iterative
method of the form (1.2), where dk satisfies gT

k dk < 0 and αk is obtained by
the standard Wolfe line search. Then we have that

∞∑

k=1

(gT
k dk)2

||dk||2 < +∞. (2.2)

To simplify the statements of the following results, we assume that gk 6= 0
for all k for otherwise a stationary point has been found. Assume also that
βk 6= 0 for all k. This is because if βk = 0, the direction in (1.3) reduces to
the negative gradient direction. Thus either the method converges globally
if βk = 0 for infinite number of k, or one can take some xk as the new initial
point. In addition, we say that a method is globally convergent if

lim inf
k→∞

‖gk‖ = 0, (2.3)

and is strongly convergent if

lim
k→∞

‖gk‖ = 0, (2.4)

If the iterations {xk} stay in a bounded region, (2.3) means that there
exists at least one cluster point which is a stationary point of f , while (2.4)
indicates that every cluster point of {xk} will be a stationary point of f .

To analyze the method of the form (1.2)-(1.3), besides (1.9), we derive
another basic relation. By (1.3), we have dk + gk = βkdk−1 for all k ≥ 2.
Squaring both sides of this relation yields

‖dk‖2 = −2gT
k dk − ‖gk‖2 + β2

k‖dk−1‖2. (2.5)

The following theorem gives a general convergence result for any descent
method of the form (1.2)-(1.3) under the strong Wolfe line search. It indi-
cates that, if ‖dk‖2 is at most linearly increasing, namely, ‖dk‖2 ≤ c1 k + c2

for all k, a descent conjugate gradient method with strong Wolfe line search
is globally convergent.
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Theorem 2.3. [22] Suppose that Assumption 2.1 holds. Consider any
method of the form (1.2)-(1.3) with dk satisfying gT

k dk < 0 and with the
strong Wolfe line search (1.5) and (1.6). Then the method is globally con-
vergent if ∑

k≥1

1
‖dk‖2 = +∞. (2.6)

Proof. It follows from (1.9) and (1.6) that |gT
k dk|+σ|βk||gT

k−1dk−1| ≥ ‖gk‖2,
which with the Cauchy-Schwarz inequality gives

(gT
k dk)2 + β2

k(gT
k−1dk−1)2 ≥ c1‖gk‖4, (2.7)

where c1 = (1 + σ2)−1 is constant. By (2.5), gT
k dk < 0 and (2.7), we have

(gT
k dk)2

‖dk‖2 +
(gT

k−1dk−1)2

‖dk−1‖2

=
1

‖dk‖2

[
(gT

k dk)2 +
‖dk‖2

‖dk−1‖2 (gT
k−1dk−1)2

]

≥ 1
‖dk‖2

[
(gT

k dk)2 + β2
k(gT

k−1dk−1)2 −
(gT

k−1dk−1)2

‖dk−1‖2 ‖gk‖2

]

≥ 1
‖dk‖2

[
c1‖gk‖4 − (gT

k−1dk−1)2

‖dk−1‖2 ‖gk‖2

]
. (2.8)

Assume that (2.3) is false and there exists some constant γ > 0 such that

‖gk‖ ≥ γ, for all k ≥ 1. (2.9)

Notice that the Zoutendijk condition (2.2) implies that gT
k dk/‖dk‖ tends to

zero. By this, (2.8) and (2.9), we have for sufficiently large k,

(gT
k dk)2

‖dk‖2 +
(gT

k−1dk−1)2

‖dk−1‖2 ≥ c1

2
‖gk‖2

‖dk‖2 . (2.10)

Thus by the Zoutendijk condition and (2.9), we must have that

∑

k≥1

1
‖dk‖2 ≤

1
γ2

∑

k≥1

‖gk‖2

‖dk‖2 < +∞, (2.11)

which is a contradiction to the assumption (2.6). Therefore we must have
the convergence relation (2.3) holds.
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We are now going to provide another general global convergence theorem
for any descent method (1.2)-(1.3) with the standard Wolfe line search. To
this aim, we define

tk =
‖dk‖2

φ2
k

, φk =

{
‖g1‖2, for k = 1;∏k

j=2 β2
j , for k ≥ 2.

(2.12)

By dividing (2.5) by φ2
k and noticing that d1 = −g1, we can obtain ([17])

that for all k ≥ 1

tk = −2
k∑

i=1

gT
i di

φ2
i

−
k∑

i=1

‖gi‖2

φ2
i

. (2.13)

Theorem 2.4. [17] Suppose that Assumption 2.1 holds. Consider any
method of the form (1.2)-(1.3) with dk satisfying gT

k dk < 0 and with the
standard Wolfe line search (1.5) and (1.7). Then the method is globally
convergent if the scalar βk is such that

∑

k≥1

k∏

j=2

β−2
j = +∞. (2.14)

Proof. Define φk as in (2.12). The condition (2.14) is equivalent to

∑

k≥1

1
φ2

k

= +∞. (2.15)

Noting that −2gT
i di − ‖gi‖2 ≤ (gT

i di)2/‖gi‖2, it follows from (2.13) that

tk ≤
k∑

i=1

(gT
i di)2

‖gi‖2 φ2
i

. (2.16)

Since tk ≥ 0, the relation (2.13) also gives

−2
k∑

i=1

gT
i di

φ2
i

≥
k∑

i=1

‖gi‖2

φ2
i

. (2.17)

Noting that −4gT
i di−‖gi‖2 ≤ 4(gT

i di)2/‖gi‖2, we get by this and (2.17) that

4
k∑

i=1

(gT
i di)2

‖gi‖2φ2
i

≥ −4
k∑

i=1

gT
i di

φ2
i

−
k∑

i=1

‖gi‖2

φ2
i

≥
k∑

i=1

‖gi‖2

φ2
i

. (2.18)
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Now we proceed by contradiction and assume that (2.9) holds. Then by
(2.18), (2.15) and (2.9), we have that

∑

k≥1

(gT
k dk)2

‖gk‖2φ2
k

≥ γ2

4

∑

k≥1

1
φ2

k

= +∞, (2.19)

which means that the sum series in the right hand side of (2.16) is divergent.
By Lemma 6 in [71], we then know that

+∞ =
∑

k≥1

(gT
k dk)2

‖gk‖2φ2
k

1
tk

=
∑

k≥1

(gT
k dk)2

‖gk‖2‖dk‖2
≤ 1

γ2

∑

k≥1

(gT
k dk)2

‖dk‖2 , (2.20)

which contradicts the Zoutendijk condition (2.2). The contradiction shows
the truth of (2.3).

Theorem 2.4 provides a condition on βk which is sufficient for the global
convergence of a conjugate gradient method using the standard Wolfe line
search. Instead of the sufficient descent condition (1.10), only the descent
condition dT

k gk < 0 is used here. An easy understanding between Theorems
2.3 and 2.4 is given in [17] under the strong Wolfe line search, in which
situation we have the estimate dk ≈ βk dk−1 if there is no convergence.
Since different nonlinear conjugate gradient methods only vary with the
scalar βk, we believe the condition (2.14) in Theorem 2.4 is very powerful in
the convergence analysis of conjugate gradient methods. See [17] for some
further uses of (2.14).

3 Early conjugate gradient methods

3.1 The Fletcher-Reeves method

In 1964, Fletcher and Reeves ([37]) proposed the first nonlinear conjugate
gradient method and used the following conjugate gradient parameter

βFR
k =

||gk||2
||gk−1||2

. (3.21)

The introduction of the FR method is a milestone in the field of large-scale
nonlinear optimization.

Early analysis with the FR method is based on the exact line search.
Zoutendijk [94] proved that the FR method with the line search is globally
convergent for nonlinear function. Al-Baali [1] first analyzed the FR method
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with strong Wolfe inexact line searches (1.5)-(1.6). He showed that if σ <
1/2, the sufficient condition (1.10) holds and there is global convergence.
Liu et al [51] extended Al-Baali’s result to the case that σ = 1/2. Dai
and Yuan [25] presented a simpler proof to this result by showing that the
sufficient condition (1.10) holds for at least one of any two neighboring
iterations. Here it is worth noting that after the descent condition (1.8) has
been verified, we can establish the global convergence easily by Theorem
2.4. More exactly, assuming that there is no convergence and (2.9) holds,
we can see that

∏k
j=2 β2

j is at most linearly increasing and hence (2.14) holds.
Consequently, there will be global convergence by Theorem 2.4, leading to
a contradiction.

Further, if σ > 1/2, Dai and Yuan [25] proved that even for the one
dimensional quadratic function

f(x) =
1
2

x2, x ∈ R,

the FR method may fail due to generating an uphill search direction. In-
teresting enough, if we continue the FR method by searching its opposite
direction once an uphill direction is generated and keeping xk+1 = xk if gk+1

is orthogonal to dk+1, it is still possible to establish the global convergence of
the method. Dai and Yuan [27] considered this idea and showed the global
convergence of the FR method under a generalized Wolfe line search.

In [68], Powell analyzed the global efficiency of the FR method with the
exact line search. Denote θk to be the angle between dk and −gk. The exact
line search implies that gk+1 is orthogonal to dk for all k and hence

‖dk+1‖ = sec θk ‖gk‖ (3.22)

and
βk+1‖dk‖ = tan θk ‖gk+1‖. (3.23)

By using the above two relations and substituting the formula (3.21), we
can obtain

tan θk+1 = sec θk ‖gk+1‖/‖gk‖ > tan θk ‖gk+1‖/‖gk‖. (3.24)

Now, if θk is close to 1
2π, the iteration may take a very small step, in which

case both the step sk = xk+1 − xk and the change yk = gk+1 − gk are small.
Thus the ratio ‖gk+1‖/‖gk‖ is close to one. Consequently, by (3.24), θk+1 is
close to 1

2π, which indicates that slow progress may occur again on the next
iteration. The drawback that the FR method may fall into some circle of
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tiny steps was extended by Gilbert and Nocedal [38] to the strong Wolfe line
search, and was observed by many researchers in the community. It explains
why the FR method sometimes is very slow in practical computations.

Suppose that after some iterations, the FR method enters a region in
the space of the variables where f is the quadratic function

f(x) =
1
2
xT x, x ∈ Rn. (3.25)

In this case, the exact line search along dk and gk = xk implies that

‖gk+1‖ = ‖gk‖ sin θk. (3.26)

By this and the equality in (3.24), we obtain θk+1 = θk. Thus the angle
between the search direction and the steepest descent direction remains
constant for all consecutive iterations, which makes the method very slow
if θk is close to 1

2π. This example was addressed by Powell [68] for the
two-dimension case and is actually valid for any dimension.

As will be seen in § 3.2, unlike the FR method, the PRP method can gen-
erate a search direction close to the steepest descent direction once a small
step occurs and hence can avoid cycles of tiny steps. On the other hand,
the PRP method need not converge even with the exact line search. This
motivates Touati-Ahmed and Storey [80] to extend Al-Baali’s convergence
result on the FR method to the general method (1.2)-(1.3) with

βk ∈
[
0, βFR

k

]
(3.27)

and suggested the formula

βTS
k = max

{
0,min

{
βPRP

k , βFR
k

}}
. (3.28)

Gilbert and Nocedal [38] further extended (3.27) to the interval

βk ∈
[−βFR

k , βFR
k

]
(3.29)

and proposed the formula

βGN
k = max

{−βFR
k ,min

{
βPRP

k , βFR
k

}}
. (3.30)

However, the numerical results in [38] show that the GN method is not so
good as the PRP method although it indeed performs better than the FR
method.
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3.2 The Polak-Ribière-Polyak method

In 1969, Polak and Ribière [66] and Polyak [67] proposed another conjugate
gradient parameter, independently, that is

βPRP
k =

gT
k yk−1

||gk−1||2
, (3.31)

where yk−1 = gk−gk−1. In practical computations, the Polak-Ribière-Polyak
(PRP) method performs much better than the FR method for many opti-
mization problems because it can automatically recover once a small step is
generated. For this, we still consider the exact line search. It follows from
(3.31) that

|βPRP
k+1 | ≤ ‖gk+1‖ ‖gk+1 − gk‖/||gk||2. (3.32)

By using the relations (3.22), (3.23) and (3.32), we can obtain

tan θk+1 ≤ sec θk‖gk+1 − gk‖/‖gk‖. (3.33)

Assume that the angle θk between −gk and dk is close to 1
2π and ‖sk‖ =

‖xk+1 − xk‖ ≈ 0. Then we have that ‖gk+1 − gk‖ ¿ ‖gk‖ and hence

tan θk+1 ¿ sec θk. (3.34)

Consequently, the next search direction dk+1 will tend to −gk+1 and avoid
the occurrence of continuous tiny steps. The PRP method was believed to
be one of the efficient conjugate gradient methods in the last century.

Nevertheless, the global convergence of the PRP method only proves
for strictly convex functions [88]; for general functions, Powell [69] showed
that the PRP method can cycle infinitely without approaching a solution
even if the stepsize αk is chosen to the least positive minimizer of the line
search function. To change this unbalanced state, Gilbert and Nocedal [38]
considered Powell [70]’s suggestion of modifying the PRP method by setting

βPRP+
k = max{βPRP

k , 0}, (3.35)

and showed that this modification of the PRP method, called PRP+, is
globally convergent both for exact and inexact line searches. More exactly,
Gilbert and Nocedal established the following result.

Theorem 3.1. Suppose that Assumption 2.1 holds. Consider the PRP+

method, namely, (1.2) and (1.3) where βk is given by (3.35). If the line
search satisfies the standard Wolfe conditions (1.5) and (1.7), and the suffi-
cient descent condition (1.10) for some constant c > 0, the method is globally
convergent.
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The technique of their proof is quite sophisticated. Firstly, they define
the so-called Property (∗), which is a mathematical lifting of the property
of avoiding cycles of tiny steps.

Property (∗) Consider the method (1.2) and (1.3) and assume that
0 < γ < ‖gk‖ ≤ γ̄. Then we say that the method has Property (∗), if there
exist constants b > 1 and ζ > 0 such that for all k,

|βk| ≤ b, (3.36)

and
‖sk−1‖ ≤ ζ =⇒ |βk| ≤ 1

2b
. (3.37)

It is not difficult to see that both PRP and PRP+ possesses such property.
Secondly, defining uk = dk/‖dk‖, Gilbert and Nocedal observed that if βk ≥
0 and if ‖dk‖ → ∞, uk and uk−1 will tend to be the same, namley, ‖uk −
uk−1‖ → 0. Their proof then proceeds by contradiction. If there is no
convergence, then ‖dk‖ must tend to infinity. Consequently, by Property
(∗), the method has to take big steps for at least half of the iterations,
otherwise ‖dk‖ becomes finite. However, since dk tends to be the same
direction for sufficiently large k, the iterations will lie out of the bounded
level set L if there are many big steps. A contradiction is then obtained.

The convergence result of Gilbert and Nocedal requires the sufficient
descent condition (1.10). If the strong Wolfe line search is used instead of the
standard Wolfe line search, the sufficient descent condition can be relaxed
to the descent condition of the search direction (see [22]). However, the
following one-dimensional quadratic example shows that the PRP method
with the strong Wolfe line search may generate an uphill search direction
(see [32]). Consider

f(x) =
1
2

λx2, x ∈ R1. (3.38)

where λ = min{1 + σ, 2 − 2δ} and suppose that the initial point is x1 = 1.
Then for any constant δ and σ satisfying 0 < δ < σ < 1/2, direct calculations
show that the unit stepsize satisfies the strong Wolfe conditions (1.5)-(1.6).
Consequently, x2 = 1− λ and

gT
2 d2 = λ2(λ− 1)3 > 0, (3.39)

which means that d2 is uphill. Thus for any small σ ∈ (0, 1), the strong Wolfe
line search can not guarantee the descent property of the PRP method even
for convex quadratic functions.
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To ensure the sufficient descent condition, required by Theorem 3.1 for
the PRP+ method, in practical computations, Gilbert and Nocedal [38]
designed a dynamic inexact line search strategy. As a matter of fact, their
strategy applies to any method (1.2) and (1.3) with nonnegative βk’s. Let
us look at (1.9). If gT

k dk−1 ≤ 0, we already have (1.10) since βk ≥ 0. On the
other hand, If gT

k dk > 0, it must be the case that gT
k dk−1 > 0, which means a

one-dimensional minimizer has been bracketed. Then gT
k dk−1 can be reduced

and (1.10) holds by applying a line search algorithm, such as that given by
Lemaréchal [49], Fletcher [36] or Moré and Thuente [57]. Comparing with
the PRP method, however, no significant improvement is reported in [38]
for the PRP+ method.

Is there any clever inexact line search that can guarantee the global
convergence of the original PRP method? Grippo and Lucidi [41] answered
this question positively by generalizing an Armijo-type line search in [35].
Given constants τ > 0, σ ∈ (0, 1), δ > 0 and 0 < c1 < 1 < c2, their line
search aims to find

αk = max
{

σj τ |gT
k dk|

||dk||2 ; j = 0, 1, · · ·
}

(3.40)

such that xk+1 = xk + αkdk and dk+1 = −gk+1 + βPRP
k+1 dk satisfy

f(xk+1) ≤ f(xk)− δ α2
k ||dk||2 (3.41)

and
−c2||gk+1||2 ≤ gT

k+1dk+1 ≤ −c1||gk+1||2, (3.42)

Such a stepsize must exist because of the following observations. If αk or,
equivalently, ‖sk‖ = ‖xk+1−xk‖ = αk‖dk‖ is small, βPRP

k+1 tends to zero and
hence dk+1 gets close to −gk+1. On the other hand, the difference in the
objective function, f(xk+1) − f(xk), is O(−gT

k sk) or O(‖sk‖), whereas the
expected decrease is only of the second order O(‖sk‖2). Therefore (3.41)
and (3.42) must hold provided that αk is sufficiently small. Furthermore,
since the total reduction of the objective function is finite, the line search
condition (3.41) enforces lim

k→∞
‖sk‖ = 0. By this property, the strong global

convergence relation (2.4) can be achieved for the PRP algorithm of Grippo
and Lucidi. From the view point of computations, Grippo and Lucidi [41] re-
fined their line search algorithm so that the first one-dimensional minimizer
of the line search function can be accepted. Again, the numerical experience
(see [64]) does not suggest a significant improvement of their algorithm over
the PRP method.
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Along the line of [41], Dai and Yuan [32] builds the strong convergence
of the PRP method with constant stepsizes

αk ≡ η, where η ∈ (0, 1
4L) is constant, (3.43)

where L is the Lipschitz constant in Assumption 2.1. This result was ex-
tended in [21] for the case that αk ≡ 1

4L . Chen and Sun [12] further studies
the PRP method together with other conjugate gradient methods using fixed
stepsizes of the form

αk =
−δ gT

k dk

dT
k Qkdk

, (3.44)

where δ > 0 is constant and {Qk} is a sequence of positive definite matrices
determined in some way.

3.3 The Hestenes-Stiefel method

In this subsection, we briefly discuss the Hestenes-Stiefel (HS) conjugate
gradient method, namely, (1.2)-(1.3) where βk is calculated by

βHS
k =

gT
k yk−1

dT
k−1yk−1

. (3.45)

Such a formula is first used by Hestenes and Stiefel in the proposition of the
linear conjugate gradient method in 1952.

A remarkable property of the HS method is that, no matter whether the
line search is exact or not, by multiplying (1.3) with yk−1 and using (3.45),
we always have that

dT
k yk−1 = 0. (3.46)

In the quadratic case, yk−1 is parallel to Adk−1, where A is the Hessian of
the function. Then (3.46) implies dT

k Adk−1 = 0, namely, dk is conjugate to
dk−1. For this reason, the relation (3.46) is often called conjugacy condition.

If the line search is exact, we have by (1.9) that gT
k dk = −‖gk‖2 since

gT
k dk−1 = 0. It follows that dT

k−1yk−1 = ‖gk−1‖2 and βHS
k = βPRP

k . There-
fore the HS method is identical to the PRP method in case of exact line
searches. As a result, Powell [69]’s counter-example for the PRP method also
applies to the HS method, showing the nonconvergence of the HS method
with the exact line search. Unlike the PRP method, whose convergence can
be guaranteed by the line search of Grippo and Lucidi [41], it is still known
yet whether there exists a clever line search such that the (unmodified) HS
method is well defined at each iteration and converges globally. The answer
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is perhaps negative. One major observation is that, when ‖sk−1‖ is small,
both the nominator and denominator of βHS

k become small so that βHS
k

might be unbounded. Another observation is that, for any one dimensional
function, we always have

d2 = −g2 + βHS
2 d1 = −g2 +

g2 · y1

d1 · y1
d1 = −g2 + g2 = 0 (3.47)

independent of the line search. Consequently, there is some special difficulty
to ensure the descent property of the HS method with inexact line searches.

Similarly to the PRP+ method, we can consider the HS+ method, where

βHS+
k = max{βHS

k , 0}. (3.48)

In case of the sufficient descent condition (1.10), it is easy to verify that
both HS and HS+ have Property (∗). Further, we can similarly modify the
standard Wolfe line search to ensure the sufficient descent condition and
global convergence for the HS+ method. If the sufficient descent condition
(1.10) is relaxed to the descent condition, Qi et al [74] established the global
convergence of a modified HS method, where βk takes the form

βQHL
k = max

{
0,min

{
βHS

k ,
1

‖gk‖
}}

. (3.49)

Early in 1977, Perry [65] observed that the search direction in the HS
method can be written as

dk = −Pk gk, (3.50)

where

Pk = I − dk−1y
T
k−1

dT
k−1yk−1

. (3.51)

Noting that P T
k yk−1 = 0, Pk is an affine transformation that transforms Rn

into the null space of yk−1. To ensure the descent property of dk, however,
we may wish the matrix Pk is positive definite. It is obvious that there is
no positive definite matrix Pk such that P T

k yk−1 = 0. Instead, we look for a
positive definite matrix Pk such that the conjugacy condition (3.46) holds.
In case of exact line searches, it is sufficient to require Pk to satisfy

P T
k yk−1 = sk−1, (3.52)

which is exactly the quasi-Newton equation (for example, see [88]). Follow-
ing this line, we can consider to generate Pk by using the BFGS update from
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γk−1 I, where γk−1 is some scaling factor. This yields

Pk(γk−1) = γk−1

(
I − sT

k−1yk−1 + yk−1sk−1

sT
k−1yk−1

)
+

(
1 +

γk−1‖yk‖2

sT
k−1yk−1

)
sk−1s

T
k−1

sT
k−1yk−1

.

(3.53)
Shanno [76] explored this idea with γk−1 = 1 (namely, no scaling is consid-
ered in the BFGS update) and obtained the search direction

dk = −gk +

[
gT
k yk−1

sT
k−1yk−1

−
(

1 +
‖yk−1‖2

sT
k−1yk−1

)
gT
k sk−1

sT
k−1yk−1

]
sk−1 +

gT
k sk−1

sT
k−1yk−1

yk−1.

(3.54)
The method (1.2) and (3.54) is called memoryless BFGS method by Buckley
[11]. It is easy to see that the memoryless BFGS method reduces to the HS
method if the line search is exact. Without much more calculations and
storage at each iteration, the memoryless BFGS method performs much
better than the HS method in practical computations.

In case of inexact line searches, Dai and Liao [23] derived the following
relation directly from (3.50) and (3.52),

dT
k yk−1 = −(Pkgk)T yk−1 = −gT

k (P T
k yk−1) = −gT

k sk−1. (3.55)

By introducing a scaling factor t, Dai and Liao considered a generalized
conjugacy condition,

dT
k yk−1 = −t gT

k sk−1, (3.56)

and proposed the following choice for βk,

βDL
k (t) =

gT
k yk−1 − t gT

k sk−1

dT
k−1yk−1

. (3.57)

Clearly, if the line search is exact, namely, gT
k sk−1 = 0, the DL direction

is identical to the HS direction. If gT
k sk−1 6= 0, an analysis for quadratic

functions is presented in [23], showing that for small values of t, the DL
direction can bring a bigger descent in the objective function than the HS
direction if an exact line search is done at the k-th iteration. The numerical
experiments in [23] showed that the DL method with t = 0.1 is a signifi-
cant improvement of the HS method. In addition, similarly to PRP+ and
HS+, Dai and Liao [23] established the global convergence of a modified DL
method, where

βDL+
k (t) = max

{
gT
k yk−1

dT
k−1yk−1

, 0

}
− t

gT
k sk−1

dT
k−1yk−1

, (3.58)
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that allows negative values.
Two further developments of the DL method are made by Yabe and

Takano [85] and Li et al [50]. Specifically, based on a modified secant con-
dition given by Zhang et al [90, 91], Yabe and Takano [85] suggested the
variants of (3.57) and (3.58) with the vector yk−1 replaced with

zk−1 = yk−1 +

(
ρ λk

sT
k−1uk−1

)
uk−1, (3.59)

where λk = 6(fk−1 − fk) + 3(gk−1 + gk)T sk−1, ρ ≥ 0 is a constant and
uk−1 ∈ Rn satisfies sT

k−1uk−1 6= 0 (for example, uk−1 = dk−1). Li et al [50]
considered the modified secant condition in Wei et al [82] and suggested the
following replacement of yk−1 in (3.57) and (3.58):

y∗k−1 = yk−1 +
νk−1

‖sk−1‖2 sk−1, (3.60)

where νk−1 = 2(fk−1 − fk) + (gk−1 + gk)T sk−1. Due to the uses of precise
modified secant conditions, certain numerical improvements are expected
for these variants over the DL and DL+ methods.

4 Descent conjugate gradient methods

From the previous section, we can see that none of the FR, PRP and HS
methods can ensure the descent property of the search direction even if the
strong Wolfe conditions (1.5) and (1.6) with arbitrary σ ∈ (0, 1). For the
FR method, the descent condition can be guaranteed by restricting σ ≤ 1/2.
However, this is not true any more for σ > 1/2. For any constant value of
σ ∈ (0, 1), there is always some possibility for the PRP and HS methods
not to generate a descent search direction.

If a descent search direction is not produced, a practical remedy is to
restart the method along −gk. However, this might degrade the efficiency
of the method since the second derivative information achieved along the
previous search direction is discarded (see [68]). From the previous section,
we see that many efforts have been made for early conjugate gradient meth-
ods to guarantee a descent direction and hence avoid the use of the remedy,
including modifying the conjugate gradient parameter βk or designing some
special line search. In this section, we will first address the conjugate de-
scent method and then emphasize the Dai-Yuan method, both of which can
ensure the descent condition under the strong Wolfe conditions and the stan-
dard Wolfe conditions, respectively. A hybrid of the two methods is briefly
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mentioned at last, which can ensure a descent direction at every iteration
without line searches.

4.1 The conjugate descent method

In his monograph [36], Fletcher proposed the conjugate descent (CD) method,
namely, (1.2)-(1.3) with βk is given by

βCD
k =

‖gk‖2

−dT
k−1gk−1

. (4.1)

Other than the FR, PRP and HS methods, the CD method can ensure the
descent property of each search condition provided that the strong Wolfe
conditions (1.5)-(1.6) are used. To see this, we first introduce the following
variants of the strong Wolfe conditions, namely, (1.5) and

σ1 gT
k dk ≤ g(xk + αkdk)T dk ≤ −σ2 gT

k dk, (4.2)

where 0 < δ < σ1 < 1 and 0 ≤ σ2 < 1. If σ1 = σ2 = σ, the above conditions
reduce to the strong Wolfe conditions (1.5)-(1.6). Now, by (1.9) and (4.1),
we have

−gT
k dk = ‖gk‖2

[
1 + gT

k dk−1/gT
k−1dk−1

]
. (4.3)

The above relation and (4.2) indicates that

1− σ2 ≤ −gT
k dk/‖gk‖2 ≤ 1 + σ1. (4.4)

Since σ2 < 1, the left inequality in (4.4) means that (1.10) holds with c =
1− σ2 and hence the descent condition holds.

Global convergence analysis of the CD method is made in Dai and Yuan
[26] using the generalized strong Wolfe conditions (1.5) and (4.2). Specifi-
cally, if σ1 < 1 and σ2 = 0, it follows from (4.1), (4.4) and (3.21) that

0 ≤ βCD
k ≤ βFR

k . (4.5)

Therefore by the result of Touati-Ahmed and Storey [80] related to the
relation (3.27), there is global convergence of the CD method. However,
for any σ2 > 0, it is possible that the square norm ‖dk‖2 in the method
increases to infinity at an exponential rate. Specifically, Dai and Yuan [26]
considered the following two dimensional function

f(x, y) = ξ x2 − y, where ξ ∈ (1, 9/8), (4.6)

and showed that the CD method with the generalized strong Wolfe line
search may not solve (4.6). In real computations, the CD method is even
inferior to the FR method.
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4.2 The Dai-Yuan method

To enforce a descent direction in case of the standard Wolfe line search, Dai
and Yuan [30] proposed a new conjugate gradient method, where

βDY
k =

‖gk‖2

dT
k−1yk−1

. (4.7)

For the DY method, it follows by (1.3), (4.7) and direct calculations that

gT
k dk =

‖gk‖2

dT
k−1yk−1

gT
k−1dk−1. (4.8)

The fraction in (4.8) is exactly the DY formula (4.7). With this observation,
we can get an equivalent expression of βDY

k from (4.8),

βDY
k =

gT
k dk

gT
k−1dk−1

. (4.9)

The following theorem establishes the descent property and global con-
vergence of the DY method with the standard Wolfe line search.

Theorem 4.1. Suppose that Assumption 2.1 holds. Consider the DY method,
namely, (1.2) and (1.3) where βk is given by (4.7). If the line search satisfies
the standard Wolfe conditions (1.5) and (1.7), we have that gT

k dk < 0 for
all k ≥ 1. Further, the method converges in the sense that lim inf

k→∞
‖gk‖ = 0.

Proof. It is obvious that dT
1 g1 < 0 since d1 = −g1. Assume that gT

k−1dk−1 <

0. It follows by this and (1.7) that dT
k−1yk−1 > 0. Thus by (4.8), we also

have that gT
k dk < 0. Therefore by induction, gT

k dk < 0 for all k ≥ 1.
Now, let us denote

qk =
‖dk‖2

(gT
k dk)2

, rk = − gT
k dk

‖gk‖2 . (4.10)

Dividing (2.5) by (gT
k dk)2 and using (4.9) and (4.10), we obtain

qk = qk−1 +
1

‖gk‖2

2
rk
− 1
‖gk‖2

1
r2
k

. (4.11)

Noting that 2
rk
− 1

r2
k
≤ 1, an immediate corollary of (4.11) is

qk ≤ qk−1 + ‖gk‖−2. (4.12)
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Assuming that lim inf
k→∞

‖gk‖ 6= 0 and (2.9) holds. By (2.9), (4.12) and d1 =

−g1, we have qk ≤ k/γ2 and hence
∑

k≥1 q−1
k = +∞, which contradicts the

Zoutendijk condition (2.2). Therefore the statement is true.

By (4.11), we can further exploit the self-adjusting property of the DY
method ([18]). To this aim, we first notice that the rk defined in (4.10)
is a quantity that reflects the descent degree of the search direction dk,
since the descent condition (1.8) is equivalent to rk > 0 and the sufficient
condition (1.10) is the same as rk ≥ c. Now let us focus on the relation
(4.11). The second term on the right side of (4.11) increases the value of
qk−1, whereas the third term decreases the value of qk−1. Considering the
two terms together, we see that qk−1 increases if and only if rk ≥ 1/2. If
rk is close to zero, then qk−1 will be significantly reduced, since the order of
1/rk in the second term is only one but its order in the third term is two.
This and the fact that qk ≥ 0 for all k imply that, in the case when qk−1

is very small, rk must be relatively large. Further investigations along the
observations can lead to the following result of the DY method independent
of the line search.

Theorem 4.2. Consider the DY method (1.2), (1.3) and (4.7) where dk is
a descent direction. Assume that 0 < γ ≤ ‖gk‖ ≤ γ̄ holds for all k ≥ 1.
There must exist positive constants δ1, δ2 and δ3 such that the relations

−gT
k dk ≥ δ1√

k
, ‖dk‖2 ≥ δ2

k
, rk ≥ δ3√

k
(4.13)

holds for all k ≥ 1. Further, for any p ∈ (0, 1), there must positive constants
δ4 δ5, δ6 such that, for any k, the relations

−gT
i di ≥ δ4, ‖di‖2 ≥ δ5, ri ≥ δ6 (4.14)

holds for at least [pk] values of i ∈ [1, k].

The above theorem enables us to establish the global convergence for the
DY method provided that the line search is such that

fk − fk+1 ≥ cmin
{−gT

k dk, ‖dk‖2, q−1
k

}
, (4.15)

for all k ≥ 1 and some c > 0. Consequently, we can analyze the conver-
gence properties of the DY method using the standard Wolfe line search,
the Armijo line search [4] and the line search proposed in [35, 40] for no-
derivative methods.
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In general, once some optimization method fails to generate a descent
direction, a usual remedy is to do a restart along −gk. As shown in [18], the
DY direction can act the role of the negative gradient and meanwhile guar-
antee the global convergence. A numerical experiment with the memoryless
BFGS method in [18] demonstrated this finding.

Since the DY method has the same drawback as the FR method, namely,
it can not recover from cycles of tiny steps, it is natural to consider the hybrid
of the DY and HS methods like those for the FR and PRP methods in
[80, 38]. Under the standard Wolfe line search, Dai and Yuan [33] extended
Theorem 4.1 to any method (1.2), (1.3) with

βk ∈
[
−1− σ

1 + σ
βDY

k , βDY
k

]
, (4.16)

where σ is the parameter in the Wolfe condition (1.7). In spite of a large
admissible interval, the numerical results of Dai and Yuan [33] indicated
that the following hybrid is preferable in real computations

βDY HS
k = max

{
0, min

{
βHS

k , βDY
k

}}
. (4.17)

Unlike the TS and GN hybrid methods, the DYHS method using standard
Wolfe line searches performs much better than the PRP method using strong
Wolfe line searches (see [33]). The latter was generally believed as one of
the most efficient conjugate gradient algorithms.

It is well known that some quasi-Newton methods can be expressed in a
unified way and their properties can be analyzed uniformly (for example, see
[8, 9]). On the contrary, nonlinear conjugate gradient methods were often
analyzed individually. To change the situation, Dai and Yuan [28] proposed
a family of conjugate gradient methods, in which

βk(λ) =
||gk||2

λ||gk−1||2 + (1− λ)dT
k−1yk−1

, λ ∈ [0, 1]. (4.18)

This family can be regarded as some kind of convex combination of the
FR, and DY methods. Dai and Yuan [29] further extended the family to
the case λ ∈ (−∞,+∞) and presented some unified convergence results.
Independently, Nazareth [60] regarded the FR, PRP, HS and DY formulas
as the four leading contenders for the conjugate gradient parameter and
proposed a two-parameter family:

βk(λk, µk) =
λk||gk||2 + (1− λk)gT

k yk−1

µk||gk−1||2 + (1− µk)dT
k−1yk−1

, λk, µk ∈ [0, 1]. (4.19)
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The methods that take the convex combination λkβ
HS
k + (1− λk)βDY

k , con-
sidered in Andrei [2], can be regarded as a subfamily of (4.19) with µk = 0.
Several efficient choices for λk in this subfamily are also studied in [2] based
on different secant conditions.

Later, based on FR, PRP, HS, DY, CD and the formula

βLS
k =

gT
k yk−1

−dT
k−1gk−1

(4.20)

by Liu and Storey [53], Dai and Yuan [34] proposed a three-parameter family:

βk(λk, µk, ωk) =
||gk||2 − λkg

T
k gk−1

||gk−1||2 + µkg
T
k dk−1 − ωkβk−1g

T
k−1dk−2

, (4.21)

where λk ∈ [0, 1], µk ∈ [0, 1] and ωk ∈ [0, 1 − µk] are parameters. One
subfamily of the methods (4.21) with λk = 1, µk = 0 and ωk = u is studied
in Shi and Guo [78] with an efficient nonmonotone line search. Further, Dai
[20] studied a family of hybrid conjugate gradient methods, in which

βk(µk, ωk, τk) =
max{0,min{gT

k yk−1, τk‖gk‖2}}
(τk + ωk)gT

k dk−1 + µk‖gk−1‖2 + (1− µk)(−dT
k−1gk−1)

,

(4.22)
where µk ∈ [0, 1], ωk ∈ [0, 1− µk] and τk ∈ [1,+∞) are parameters.

4.3 The DYCD method

Suppose that M is some fixed positive integer, and λ and δ are constants in
(0, 1). Given an initial guess ᾱk at the k-th iteration, the nonmonotone line
search by [39] is to compute the least non-negative integer m such that the
steplength αk = ᾱkλ

m satisfies the following relation:

f(xk + αkdk) ≤ max{fk, . . . , fk−M(k)}+ δαkg
T
k dk, (4.23)

where M(k) = min (M, k − 1). To enforce a descent search direction at
every iteration in this situation, Dai [19] considered a hybrid of the DY and
CD methods, namely, (1.2)-(1.3) with

βDY CD
k =

‖gk‖2

max
{
dT

k−1yk−1, −dT
k−1gk−1

} . (4.24)

It is proved in [19] that the DYCD method possesses the descent property
without line searches. Further, there is the global convergence if the DYCD
method is combined with the above nonmonotone line search. Surprisingly, a
variant of the DYCD method tested in [19] was able to solve all the eighteen
test problems in Moré et al [56].
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5 Sufficient descent conjugate gradient methods

In this section, we summarize several nonlinear conjugate gradient methods
that can guarantee the sufficient descent condition (1.10), especially the
CG Descent method by Hager and Zhang [42, 44].

Since the sufficient descent condition (1.10) is not scale invariant, how-
ever, there is some difficulty to differentiate descent conjugate gradient meth-
ods and sufficient descent conjugate gradient methods. More exactly, if dk

satisfies gT
k dk < 0, we can define another method whose search direction is

d̄k =
(−c ‖gk‖2/gT

k dk

)
dk such that gT

k d̄k = −c‖gk‖2.
Let us take the DY method as an illustrative example. A variant of the

DY method is given in Dai [18], where dk takes the form

dk = −dT
k−1yk−1

‖gk‖2
gk + dk−1. (5.1)

Since d1 = −g1, we can get by the induction principle that

gT
k dk = −||g1‖2, for all k ≥ 1. (5.2)

Further, if a scaling factor ‖gk‖2/‖gk−1‖2, that is the formula βFR
k exactly,

is introduced for each search direction dk (except d1), we obtain the scheme

dk = −dT
k−1yk−1

‖gk−1‖2 gk + βFR
k dk−1. (5.3)

In this case, we have that −gT
k dk = ‖gk‖2 for all k, which implies that the

sufficient descent condition (1.10) holds with c = 1. It is worth mentioning
that the above scheme (5.3) is obtained by Zhang et al [92] (see also § 5.2)
with the motivation of modifying the Fletcher-Reeves method. They found
that, the numerical performance of this scheme is very promising for a large
collection of test problems in the CUTEr library [7].

5.1 The CG Descent method

To ensure the sufficient descent condition (1.10), Hager and Zhang [44] pro-
posed a family of conjugate gradient methods, where

βHZ
k (λk) =

gT
k yk−1

dT
k−1yk−1

− λk

(
‖yk−1‖2 gT

k dk−1

(dT
k−1yk−1)2

)
, (5.4)
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where λk ≥ λ̄ > 1/4 controls the relative weight placed on the conjugacy
degree versus the descent degree of the search direction. This family is
clearly related to the DL method (3.57) with

t = λk
‖yk−1‖2

sT
k−1yk−1

. (5.5)

To verify the sufficient descent condition for the HZ method, we have by
(1.3) and (5.4) that

gT
k dk = −‖gk‖2 +

(
gT
k yk−1(gT

k dk−1)
dT

k−1yk−1

)
− λk

(
‖yk−1‖2 (gT

k dk−1)2

(dT
k−1yk−1)2

)
. (5.6)

Now, by applying

uk =
1√
2λk

(dT
k−1yk−1) gk, vk =

√
2λk (gT

k dk−1) yk−1 (5.7)

into the inequality

uT
k vk ≤ 1

2
(‖uk‖2 + ‖vk‖2

)
, (5.8)

we can obtain

gT
k yk−1(gT

k dk−1)
dT

k−1yk−1

≤ 1
4λk

‖gk‖2 + λk

(
‖yk−1‖2 gT

k dk−1

(dT
k−1yk−1)2

)
. (5.9)

Therefore by (5.6) and (5.9), we have that

gT
k dk ≤ −

(
1− 1

4λk

)
‖gk‖2, (5.10)

which with the restriction of λk means that the sufficient descent condition
(1.10) holds with c = 1− (4λ̄)−1.

In order to obtain global convergence for general nonlinear functions,
Hager and Zhang truncated their conjugate gradient parameter similarly to
the PRP+ method. More exactly, they suggested to choose

βHZ+
k (λk) = max

{
βHZ

k (λk), ηk

}
, ηk =

−1
‖dk−1‖2 min {η, ‖gk−1‖}

, (5.11)

where η > 0 is a constant. With this truncation, they established the global
convergence of the modified method (5.11) with the standard Wolfe line
search for general functions.
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Hager and Zhang [42, 43] tested the value of λk = 2 for the family
with a precisely-developed efficient line search. For a large collection of
large-scale test problems in the CUTEr library [7], the new method, called
CG DESCENT, performs better than both PRP+ of Gilbert and Nocedal
and L-BFGS of Liu and Nocedal.

More efficient choices of λk, however, have been found in Kou and Dai
[48] by projecting the scaled memoryless BFGS direction defined in (3.50)
and (3.53) into the one dimensional manifold {−gk + β dk : β ∈ R}. By

taking the scaling factors γk−1 =
sT
k−1yk−1

‖yk−1‖2 and γk−1 = ‖sk−1‖2
sT
k−1yk−1

, they suggest

the uses of λk = 2 − dT
k−1yk−1

‖dk−1‖2‖yk−1‖2 and λk = 1, respectively. A simple and
efficient nonmonotone line search criterion is also designed in [48], that can
guarantee the global convergence of the new methods.

5.2 Several new methods that guarantee sufficient descent

The remarkable property of the HZ method (5.4) that can guarantee the suf-
ficient descent condition (1.10) for general functions have attracted several
further investigations.

A direct generalization of (5.4) is given in Yu and Guan [86] (see also
[87]). They found that, for any βk of the form

βk =
gT
k vk

∆k
, for some vk ∈ Rn and ∆k ∈ R, (5.12)

there is a corresponding formula

βY G
k (C) =

gT
k vk

∆k
− C ‖vk‖2

∆2
k

gT
k dk−1, (5.13)

where C > 1/4, such that (1.10) holds with c = 1 − (4C)−1. Since almost
all of the conjugate gradient parameters can be written into (5.12), we can
obtain various extensions that can guarantee sufficient descent. It is obvious
that the HZ formula (5.4) is corresponding to (5.13) with the HS formula
(3.45) where vk = yk−1 and ∆k = dT

k−1yk−1. The extensions of βFR
K , βPRP

k ,
βDY

k , βCD
k and βLS

k are also provided in [86]. A further generalization of
this framework on the spectral conjugate gradient method (see [6] or § 6) is
given in [87].

Another general way of producing sufficient descent conjugate gradient
methods is provided in Cheng [13] and Cheng and Liu [14]. Its basic is as
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follows. For any search direction −gk + βk dk−1, which need not be descent,
an orthogonal projection to the null space of gk leads to the vector

d⊥k =

(
I − gkg

T
k

‖gk‖2

)
(−gk + βk dk−1). (5.14)

The search direction defined by

dk = −gk + d⊥k

= −
(

1 + βk
gT
k dk−1

‖gk‖2

)
gk + βk dk−1 (5.15)

then always satisfies gT
k dk = −‖gk‖2. If the line search is exact, the second

term in the parathesis of (5.15) is missing since gT
k dk−1 = 0. Hence the

above scheme reduces to the linear conjugate gradient method in the ideal
case. The above procedure with βk = βPRP

k is studied in [13]. As shown
in [14], setting βk = βFR

k in (5.15) leads to the scheme (5.3). Another
variant corresponding to to Yabe and Takano [85] (see the end of § 3.3) is
also investigated in [14].

Observing that the search direction (3.54) defined by the memoryless
BFGS method is formed by the vectors −gk, dk−1 and yk−1, Zhang et al [93]
proposes the following modification of the PRP method

dk = −gk +
gT
k yk−1

‖gk−1‖2 dk−1 − gT
k dk−1

‖gk−1‖2 yk−1. (5.16)

By multiplying the above dk with gT
k , one can see that the corresponding val-

ues of the last two terms have opposite signs and hence gT
k dk = −‖gk‖2. The

above scheme was implemented in [93] with an Armijo-type line search in
relation to [35], yielding comparable numerical results with CG DESCENT.
Although (5.16) reduces to (1.3) in case of exact line searches, this scheme
is not a standard conjugate gradient method of the form (1.3) any more.

6 Several topics on conjugate gradient methods

As shown in the previous sections, various formulas have been proposed for
the nonlinear conjugate gradient parameter βk, whereas there is not much to
do with the choice of this parameter in the linear conjugate gradient method
(it is a consensus to use the FR formula (3.21) there). While some of the
existing conjugate gradient algorithms, like the DYHS method (4.17) and
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the CG DESCENT method (5.4) among others, have proved more efficient
than the PRP method, we feel there is still much room to seek the best
nonlinear conjugate gradient algorithms.

As a lot of attention has been paid to the choice of βk, it is actually also
important how to choose the stepsize αk. Some joint consideration is given
by Yuan and Stoer [89], which aims to find the best points of the function
over the two-dimensional manifold

xk + Span{−α gk + β dk−1 : (α, β) ∈ R2}. (6.1)

as the next iterates. Motivated by the success of the Barzilai-Borwein step-
size in the steepest descent method (for example, see [5, 75]), Birgin and
Martinez [6] proposed the so-called spectral conjugate gradient method that
takes the search direction

dk = − 1
δk

gk +
gT
k (yk−1 − δk sk−1)

δk dT
k−1yk−1

dk−1. (6.2)

The efficient combination of the Barzilai-Borwein method and the conjugate
gradient method, however, is still not known to us. Specifically, the study of
Dai and Liao [23] indicates that when the iterate gets close to the solution,
the Barzilai-Borwein stepsize can always be accepted by the often-employed
nonmonotone line search. We wonder whether there is a similar result for
the spectral conjugate gradient method or some of its suitable alternatives.

In addition to the standard conjugate gradient method of the form (1.2)-
(1.3), another class of two-term conjugate gradient methods is called method
of shortest residuals (SR), that was first presented by Hestenes [45] and
studied by Pytlak and Tarnawski [73], Dai and Yuan [31], and the references
therein. The SR method defines the search direction by

dk = −Nr{gk, −βkdk−1}, (6.3)

where βk is a scalar and Nr{a, b} is defined as the point from a line segment
spanned by the vectors a and b which has the smallest norm, namely,

‖Nr{a, b}‖ = min{‖λa + (1− λ) b ‖ : 0 ≤ λ ≤ 1}. (6.4)

If βk ≡ 1, the corresponding variant of the SR method generates the same
iterations as the FR method does in case of exact line searches. The formula
of βk corresponding to the PRP method is also given in [72] and modified in
[31]. If, further, the function is quadratic, these variants of the SR method
are equivalent and the direction dk proves to be the shortest residual in the
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(k − 1)-simplex whose vertices are −g1, · · · , −gk. For the SR method, the
descent property of dk is naturally implied by its definition (see [72, 31] for
details). In contrast to the standard conjugate gradient method, where the
size of dk may become very large, the SR method has the trend of pushing
‖dk‖ very small. Therefore we wonder whether there exists some family of
methods that includes the standard conjugate gradient method and the SR
method as its members. If this is the case, it might be possible to find more
efficient methods that monitor the size of ‖dk‖ in a more efficient way.

If the storage of more vectors is admissible, one may consider to choose
for example three-term conjugate gradient methods such as [68, 58, 93] and
limited-memory quasi-Newton methods such as [52, 79] for solving large-
scale optimization problems, other than the two-term conjugate gradient
methods. As an alternative, one may think of forming some preconditioner
for conjugate gradient methods through the information already achieved
in the previous fewer iterations, for example see [10, 55, 3]. Unlike the
linear conjugate gradient method, where a constant preconditioner is usually
satisfactory, a robust and efficient conjugate gradient method for highly
nonlinear functions requires to be dynamically preconditioned. Therefore
it remains to study how to precondition the nonlinear conjugate gradient
method in more effective ways.
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References

[1] M. Al-Baali, Descent property and global convergence of the Fletcher-
Reeves method with inexact linesearch, IMA J. Numer. Anal., 5 (1985),
pp. 121–124.

[2] N. Andrei, Accelerated hybrid conjugate gradient algorithm with mod-
ified secant condition for unconstrained optimization, Numerical Algo-
rithms 54:1 (2010), pp. 1017-1398.

[3] N. Andrei, Accelerated scaled memoryless BFGS preconditioned conju-
gate gradient algorithm for unconstrained optimization, European Jour-
nal of Operational Research 204 (2010), pp. 410-420.

[4] L. Armijo, Minimization of functions having Lipschitz continuous par-
tial derivatives, Pacific J. Math. 16 (1966), pp. 1-3.

28



[5] J. Barzilai and J. M. Borwein, Two-point step size gradient methods,
IMA J. Numer. Anal. 8 (1988), pp. 141-148.

[6] E. G. Birgin and J. M. Martinez, A spectral conjugate gradient method
for unconstrained optimization, Appl. Math. Optim. 43 (2001), pp. 117-
128.

[7] I. Bongartz, A. R. Conn, N. I. M. Gould and Ph. L. Toint, CUTE: con-
strained and unconstrained testing environments, ACM Trans. Math.
Software 21 (1995), pp. 123-160.

[8] C. G. Broyden, The convergence of a class of double-rank minimization
algorithms 1. general considerations , J. Inst. Math. Appl. 6 (1970)
76–90.

[9] R. Byrd, J. Nocedal and Y. Yuan, Global convergence of a class of
variable metric algorithms, SIAM J. Numer. Anal. 4 (1987), 1171-1190.

[10] A. Buckley, A combined conjugate gradient quasi-Newton minimization
algorithms, Math. Prog. 15 (1978), pp. 200-210.

[11] A. Buckley, Conjugate gradient methods, in: M. J. D. Powell, ed., Non-
linear Optimization 1981 (Academic Press, London, 1982), pp. 17-22.

[12] X. D. Chen and J. Sun, Global Convergence of two-parameter family
of conjugate gradient methods without line search, Journal of Compu-
tational and Applied Mathematics 146 (2002), pp. 37-45.

[13] W. Y. Cheng, A two-term PRP-based descent method, Numerical Func-
tional Analysis and Optimization 28:11-12 (2007), pp. 1217-1230.

[14] W. Y. Cheng and Q. F. Liu, Sufficient descent nonlinear conjugate
gradient methods with conjugacy conditions, Numerical Algorithms 53
(2010), pp. 113-131.

[15] A. Cohen. Rate of convergence of several conjugate gradient method
algorithms, SIAM Journal on Numerical Analysis 9 (1972), pp. 248-
259.

[16] H. P. Crowder and P. Wolfe, Linear convergence of the conjugate gra-
dient method, IBM J. Res. Dec. 16 (1969), pp. 431-433.

[17] Y. H. Dai, Convergence analysis of nonlinear conjugate gradient meth-
ods, Research report, LSEC, ICMSEC, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, 2000.

29



[18] Y. H. Dai, New properties of a nonlinear conjugate gradient method,
Numerische Mathematics 89:1 (2001), pp. 83-98.

[19] Y. H. Dai, A nonmonotone conjugate gradient algorithm for uncon-
strained optimization, Journal of Systems Science and Complexity 15:2
(2002), pp. 139-145.

[20] Y. H. Dai, A family of hybrid conjugate gradient methods for uncon-
strained optimization, Mathematics of Computation 72 (2003) pp. 1317-
1328.

[21] Y. H. Dai, Convergence of conjugate gradient methods with constant
stepsizes, LSEC, ICMSEC, Academy of Mathematics and Systems Sci-
ence, Chinese Academy of Sciences, 2008 (accepted by Optimizaton
Methods and Software).

[22] Y. H. Dai, J. Han, G. Liu, D. Sun, H. Yin, and Y. Yuan, Convergence
properties of nonlinear conjugate gradient methods, SIAM Journal on
Optimization 10: 2 (1999), pp. 345–358.

[23] Y. H. Dai and L.Z. Liao, New conjugacy conditions and related nonlin-
ear conjugate gradient methods, Applied Mathematics and Optimiza-
tion 43:1 (2001), pp. 87-101.

[24] Y. H. Dai and L. Z. Liao, R-linear convergence of the Barzilai and Bor-
wein gradient method, IMA Journal of Numerical Analysis 22 (2002),
pp. 1-10.

[25] Y. H. Dai and Y. Yuan, Convergence properties of the Fletcher-Reeves
method, IMA J. Numer. Anal. 16 (1996), pp. 155–164.

[26] Y. H. Dai and Y. Yuan, Convergence properties of the conjugate descent
method, Advances in Mathematics 26:6 (1996), pp. 552-562.

[27] Y. H. Dai and Y. Yuan, Convergence of the Fletcher-Reeves method un-
der a generalized Wolfe search, Journal of Computational Mathematics
of Chinese Universities 2 (1996), pp. 142-148.

[28] Y. H. Dai and Y. Yuan, A class of globally convergent conjugate gradi-
ent methods, Research report ICM-98-030, Institute of Computational
Mathematics and Scientific/Engineering Computing, Chinese Academy
of Sciences, 1998.

30



[29] Y. H. Dai and Y. Yuan, Extension of a class of conjugate gradient meth-
ods, Research report ICM-98-049, Institute of Computational Math-
ematics and Scientific/Engineering Computing, Chinese Academy of
Sciences, 1998.

[30] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a
strong global convergence property, SIAM Journal on Optimization 10 :
1 (1999), pp. 177–182.

[31] Y. H. Dai and Y. Yuan, Global convergence of the method of shortest
residuals, Numerische Mathematik 83 (1999), pp. 581-598.

[32] Y. H. Dai and Y. Yuan, Nonlinear Conjugate Gradient Methods, Shang-
hai Scientific & Technical Publishers, 2000 (in Chinese).

[33] Y. H. Dai and Y. Yuan, An efficient hybrid conjugate gradient method
for unconstrained optimization, Annals of Operations Research 103
(2001), pp. 33-47.

[34] Y. H. Dai and Y. Yuan, A three-parameter family of conjugate gradient
methods, Mathematics of Computation 70 (2001), pp. 1155-1167.

[35] R. De Leone, M. Gaudioso, and L. Grippo, Stopping criteria for line-
search methods without derivatives, Mathematical Programming 30
(1984), pp. 285-300.

[36] R. Fletcher (1987), Practical Methods of Optimization vol. 1: Uncon-
strained Optimization, John Wiley & Sons (New York).

[37] R. Fletcher and C. M. Reeves, Function minimization by conjugate
gradients, Comput. J. 7 (1964), pp.149–154.

[38] J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate
gradient methods for optimization, SIAM J. Optimization 2 (1992), pp.
21–42.

[39] L. Grippo, F. Lamparillo, and S. Lucidi, A nonmonotone line search
technique for Newton’s method, SIAM J. Numer. Anal. 23 (1986), pp.
707-716.

[40] L. Grippo, F. Lampariello, and S. Lucidi, Global convergence and sta-
bilization of unconstrained minimization methods without derivatives,
Journal of Optimization Theory and Applications 56 (1988), pp. 385-
406.

31



[41] L. Grippo and S. Lucidi, A globally convergent version of the Polak-
Ribière conjugate gradient method, Math. Prog. 78 (1997), pp. 375-391.

[42] W. W. Hager and H. Zhang, A new conjugate gradient method with
guaranteed descent and an efficient line search, SIAM Journal on Op-
timization 16:1 (2005), pp. 170 - 192.

[43] W. W. Hager and H. Zhang, Algorithm 851: CG DESCENT, a con-
jugate gradient method with guaranteed descent, ACM Transactions on
Mathematical Software 32:1 (2006), pp. 113 - 137.

[44] W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient
methods, Pacific Journal of Optimization 2:1 (2006), pp. 335-58.

[45] M. R. Hestenes, Conjugate direction methods in optimization, Springer-
Verlag, New York Heidelberg Berlin, 1980.

[46] M. R. Hestenes and E. Stiefel, Method of conjugate gradient for solving
linear system, J. Res. Nat. Bur. Stand. 49 (1952), pp. 409–436.

[47] Y. F. Hu and C. Storey, Global convergence result for conjugate gradient
methods, J. Optim. Theory Appl. 71 (1991), pp. 399–405.

[48] C. X. Kou and Y. H. Dai, New conjugate gradient methods with an
efficient nonmonotone line search, Research report, LSEC, ICMSEC,
Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, 2010.
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